This article was downloaded by:

On: 29 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

BIS(SULFURDIIMIDO)SILICON AND GERMANIUM DERIVATIVES-CONFIGURATION IN SOLUTION AS STUDIED BY ¹H, ¹³C, ¹⁵N AND ²⁹Si-NMR SPECTROSCOPY

Max Herberholda; Silke Gerstmanna; Bernd Wrackmeyera

^a Luboratorium für Anorganische Chemie, Universität Bayreuth, Bayreuth, Germany

To cite this Article Herberhold, Max , Gerstmann, Silke and Wrackmeyer, Bernd(1995) 'BIS(SULFURDIIMIDO)SILICON AND GERMANIUM DERIVATIVES-CONFIGURATION IN SOLUTION AS STUDIED BY 1 H, 1 C, 1 N AND 2 Si-NMR SPECTROSCOPY', Phosphorus, Sulfur, and Silicon and the Related Elements, 107: 1, 257 — 268

To link to this Article: DOI: 10.1080/10426509508027941 URL: http://dx.doi.org/10.1080/10426509508027941

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

© 1995 OPA (Overseas Publishers Association)

BIS(SULFURDIIMIDO)SILICON AND GERMANIUM DERIVATIVES—CONFIGURATION IN SOLUTION AS STUDIED BY 1H, 13C, 15N AND 29Si-NMR **SPECTROSCOPY**

MAX HERBERHOLD, SILKE GERSTMANN and BERND WRACKMEYER

Laboratorium für Anorganische Chemie, Universität Bayreuth, D-95440 Bayreuth, Germany

(Received August 8, 1995)

Bis(sulfurdiimido) compounds of the type $R^1R^2M(NSNR)_2$ (M = Si, Ge; R = 'Bu, SiMe₃; R', R² = alkyl, aryl 1-7) were studied by solution-state ¹⁵N and ²⁹Si NMR spectroscopy in order to obtain information on their preferred configuration in solution. Chemical shifts 815N are sensitive towards substituents in E (deshielding) and Z (shielding) positions. The NMR data indicate that most of the compounds are fluxional, at least at room temperature, with respect to interconversion of configurational isomers [(Z/E)2, (E/Z)2, (Z/E)(E/Z)]. Furthermore, the reactivity of some bis(sulfurdiimido) silicon derivatives, $R^{1}R^{2}Si(NSNR)_{2}$, towards hexachlorodisilane was examined. For one product, 10a ($R^{1} = R^{2} = Me$, R ='Bu), a solid-state ²⁹Si CP/MAS NMR spectrum was recorded.

Key words: Sulfur diimides, bis(sulfurdiimido) compounds, hexachlorodisilane, 15N, 29Si NMR spectroscopy, configurational isomerism.

INTRODUCTION

Sulfur diimides, R(NSN)R', are important reagents in various active research areas. 1.2 Their synthetic potential is further enhanced if R and/or R' are organometallic substituents,3-5 and also if two or more RNSN groups are attached to a central element.^{6.7} In continuing our studies on the configuration of sulfur diimides⁸⁻¹⁰ and their reactivity towards hexachlorodisilane, "we report here on bis(sulfurdiimido) derivatives of silicon and germanium of the type $R^1R^2M(NSNR)_2$ (1-7). In principle, the fluxional character of the NSN system should give rise to an equilibrium between ten different configurational isomers. However, if R is a bulky substituent such as a Bu or a SiMe₃ group, the presence of isomers with Z/Z configuration is unlikely as a result of steric repulsion, and E/E configurations will also not be favoured owing to interactions between the lone pairs of electrons at the nitrogen atoms. We did not observe any trace of a long-lived Z/Z or E/E isomer for sulfur diimides R(NSN)R' with $R = R' = {}^{t}Bu$, SiMe₃ or $R = {}^{t}Bu$ and $R' = SiMe_3$. Thus, we expect mainly three isomers, either with twice Z/E, twice E/Z, or Z/E and E/Z configuration as shown in Scheme I.

In our two series of compounds $R^1R^2M(NSNR)_2$ (R = 1Bu : 1a-7a; R = SiMe₃: 1b-7b) only one silicon derivative, Me₂Si(NSN'Bu)₂ (1a), had been described previously^{7b}; however, its configuration in solution had not been studied. We strive to determine the configurations of 1-7 in solution by using NMR data, in particular ¹⁵N NMR data which had proved useful in previous studies.⁸⁻¹⁰ Furthermore, we

SCHEME I Three preferred configurations of compounds $R^{1}R^{2}M(NSNR)_{2}$ (M = Si, Ge; R = 'Bu, SiMe₃; the first letter, E or Z, refers to the position of the substituent R).

have investigated the reactivity of 1a, 2a and 1b towards Si₂Cl₆ in order to compare with the analogous reaction of Me₃Si(NSN)^tBu^{11a} which gave quantitatively a diaminosulfane derivative via cleavage of the Si—Si bond of the disilane.

RESULTS AND DISCUSSION

Synthesis of the Bis(sulfurdiimido)silicon and -germanium Derivatives

The reaction between the potassium salts K[(NSN)R] (R = 'Bu, SiMe₃) and the dihalides, R¹R²MCl₂, leads directly to the bis(sulfurdiimido) derivatives [Equation (1)].

2 K[(NSN)R] + R ¹ R ² MCl ₂	hexane -78°C	$R^{1}R^{2}M(NSNR)_{2} + 2 KCI (1)$						
	М	Si	Si	Si	Si	Si	Ge	Ge
_	R ¹	Me	Me	Me	^t Bu	Ph	Ме	Bu
<u></u>	R ²	Me	Ph	Ι	t _{Bu}	Ph	Ме	Bu
_	R = ^t Bu	1a	2a	3a	4 a	5a	6a	7a
	R = SiMe ₃	1b	2b	3b	4b	5b	6b	7b

Addition of acetonitrile or 1,2-dimethoxyethane (DME) helps to improve the solubility of the potassium salts, K[(NSN)R] (R = 'Bu, SiMe₃), and therefore accelerates the reactions. However, in the case of K[(NSN)SiMe₃] and diorganodichlorosilanes, R¹R²SiCl₂, both acetonitrile and DME favour the formation of by-products of the type 8 and 9 [Equation (2)]. Even in pure hexane the formation of these by-products cannot be completely suppressed (see Figure 1).

$$6 \ K[(NSN)SiMe_3] + R^1R^2SiCl_2$$

$$R^1R^2SiCl_2$$

$$R^1R^2SiCl_2$$

$$R^1R^2SiCl_2$$

$$R^1R^2SiCl_2$$

$$R^1R^2Si(NSN)SiMe_3$$

Reactivity of Bis(sulfurdiimido)silicon Derivatives Towards Hexachlorodisilane

Treatment of bis(N-tert-butylsulfurdiimido)dimethylsilane (1a) with hexachlorodisilane [Equation (3)], either in an equimolar ratio or in excess, gave a pale yellow

solid 10a which was characterized by EI mass spectrometry, IR spectroscopy, ¹H, ¹³C and ²⁹Si NMR in solution and solid-state ²⁹Si CP/MAS NMR spectroscopy. The analogous reaction was also carried out with 1b and 2a. According to the ²⁹Si NMR spectra in solution, the structure of the products 10b and 11a must be analogous to that of 10a. Apparently, one of the sulfurdiimido groups reacts with Si₂Cl₆ in the same way as had been observed previously, ¹¹ i.e. by oxidative cleavage of the Si—Si bond and reduction of sulfur(IV) to sulfur(II). The intramolecular N—Si coordination of one of the nitrogen atoms of the second sulfurdiimido group to one of the new NSiCl₃ substituents appears to protect the second sulfurdiimido group against further reaction with Si₂Cl₆. Obviously, the initial step of the reaction between sulfur diimides and Si₂Cl₆ requires the synchronous availability of both nucleophilic centres. The products are stable at room temperature for several days and can be stored at -20°C for longer periods without decomposition.

NMR Spectroscopic Results

The NMR data of the compounds 1-7 (Tables I and II) confirm the proposed composition of the bis(sulfurdiimido)silicon and -germanium derivatives. The ²⁹Si NMR data of 10 and 11 are listed in Table III.

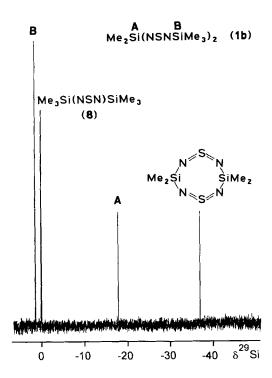


FIGURE 1 59.6 MHz ²⁹Si NMR spectrum of Me₂Si(NSNSiMe₃)₂ (1b) in toluene [d₈], measured at 298 K, recorded using the refocused INEPT pulse sequence with ¹H decoupling, based on ²J(²⁹Si¹H).

¹H and ¹³C NMR of bis(sulfurdiimido)silicon and -germanium compounds: As noted previously, ^{8b} the δ^1 H(N¹Bu) data serve to assign the presence of a preferred configuration of sulfur diimides bearing a ¹Bu group. A signal with δ^1 H 1.25–1.65 or δ^1 H 0.90–1.19 indicates the Z position or E position, respectively, of R = ¹Bu. The δ^{13} C(N¹Bu) values appear to be less reliable in that respect. The corresponding data for R = SiMe₃ and for R¹ and R² cannot be used for configurational assignments.

¹⁵N NMR of bis(sulfurdiimido)silicon and -germanium compounds: For the compounds under investigation three different methods are available for measuring and assigning ¹⁵N NMR spectra at natural abundance: (i) inverse gated ¹H decoupling (for suppression of the NOE)¹²; (ii) direct measurement without ¹H decoupling, (iii) polarization transfer by using the refocused INEPT pulse sequence¹³ with ¹H decoupling. The latter pulse sequence can be based on the long-range coupling constants ³J(¹⁵N¹H) in the range between 2–2.5 Hz for N¹Bu and 1–1.8 Hz for all other groups (see Figures 2 and 3), and its successful application also serves to assign the ¹⁵N NMR signals.

In the case of some bis(N-trimethylsilylsulfurdiimido) derivatives, e.g. 1b or 2b, 2D ¹⁵N/¹H heteronuclear shift correlations (HETCOR) were crucial for the assignment of the ¹⁵N NMR signals (see Figure 4).

As was pointed out, ¹⁰⁶ a δ^{15} N value of about -60 is typical of a ¹Bu group occupying the Z position in ¹Bu(NSN)MR₂¹R² (MR₂¹R² = organometallic fragment). Furthermore a ¹Bu group in the Z position forces the second substituent into the E

TABLE I
NMR data of R1R2M(NSN1Bu)2 (1a-7a)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
Compound	%	t _{Bu}	δ ¹ Η M R¹R²	t _{Bu} ^δ	MR ¹ R ²	δ ¹⁵ N ^t Bu	N NM	δ ²⁹ Si Si R ¹ R ²
1a Me ₂ Si(NSN ^t Bu) ₂								
(Z/E),	100	1.43	0.23	29.7	1.5	-56.3 ^[b]	-71.8	-16.2
•			(6.6)	62.2	(67.8)			
2a MePhSi(NSN ^t Bu) ₂								
(Z/E) ₂	100	1.44	0.49	29.8	0.5	n.m.	n.m.	-26.7
_			7.20 m	62.4	[c]			ĺ
	1		7.60 m		1			1
3a MeHSi(NSN ^t Bu)₂				Ì				
(Z/E) ₂	100	1.38	0.23 d	29.8	0.8	-52.6 ^[d]	-78.7	-34.1
_	1		5.21 q	62.4				
4a tBu2Si(NSNtBu)2			•					
(Z/E) ₂	100	1.44	0.98	29.7	20.8 ^[e]	-55.1 ^[f]	-82.1	-15.6
	ĺ	1		61.9	27.8	!		
5a Ph ₂ Si(NSN ^t Bu) ₂								
(Z/E) ₂	100	1.48	7.18 m	29.7	[g]	n.m.	n.m.	-37.5
]		7.73 m	62.7	-]
6a Me ₂ Ge(NSN ^t Bu) ₂								
(Z/E) ₂	50	1.34	0.51	28.8	2.7 ^[h]	-57.5 ^[i]	-50.0	<u> </u>
				61.4				
(Z/E)(E/Z)	50	1.37	0.38	29.0	2.0 ^[h]	~60.6	-53.7	l —
	1	0.99		61.1		(Z)	(E)	
				31.4		+27.4	-130.0	
,	1			60.0		(E)	(Z)	
7a Bu ₂ Ge(NSN ^t Bu) ₂	1	ĺ				·		ĺ
(Z/E) ₂	50	1.45	0.82 t	29.0	[j]	-61.2 ^[k]	-57.3	—
			1.18 m	61.5				
	l		1.54 m					ļ
(Z/E)(E/Z)	50	1.50	0.82 t	29.1	[1]	-64.1	-57.3	—
		1.00	1.18 m	61.3		(Z)	(E)	
			1.54m	31.3		+22.0	-137.1	
	ĺ.	ĺ.		60.0		(E)	(Z)	İ

- [a] In toluene [d_B], measured at -40°C; coupling constants in Hz: ⁿJ(²⁹SiX) in (); n.m. = not measured; d = doublet, m = multiplet, q = quartet, t = triplet. The configurations of 2a and 5a are assumed to be analogous to that of 1a, 3a and 4a.
- [b] Measured at -30°C; $\delta^{14}N(27^{\circ}C) = -54.0 (N^{t}Bu)$, -74.0 (NSiMe₂).
- [c] δ^{13} C = 133.8 (ipso), 136.6 (ortho), 128.2 (meta), 130.2 (para).
- [d] $\delta^{14}N(27^{\circ}C) = -48.0 (N^{\dagger}Bu), -82.0 (NSiMeH).$
- [e] ${}^{1}J({}^{29}Si^{13}C) = 70.8 \text{ Hz}.$
- [f] Measured at -50°C; $\delta^{14}N(27^{\circ}C) = -56.0 (N^{t}Bu)$, -83.0 (NSi $^{t}Bu_{7}$).
- [g] δ^{13} C = 134.7 (ipso), 135.3 (ortho), 128.2 (meta), 133.4 (para).
- [h] No assignment possible.
- [j] Measured at -30°C.
- [j] $\delta^{13}C = 14.0 \text{ (CH}_3)$; 19.0, 26.0, 26.2 (CH₂).
- [k] $\delta^{14}N(27^{\circ}C) = -65.0$.
- δ^{13} C = 13.8 (CH₃); 18.2, 25.6, 26.0 (CH₂).

NMR data of $R'R'M(NSNSiMe_3)_2$ (1b-7b)								
Compound	δ¹H		δ ¹³ C		δ ¹⁵ N		δ ²⁹ Si	
	Si Me ₃	MR ¹ R ²	Si Me ₃	MR ¹ R ²	NSiMe ₃	NM	SiMe ₃	SiR ¹ R ²
Me ₂ Si(NSNSiMe ₃) ₂								
1b	0.22	0.35	0.8	1.3	-65.1 -	54.7	+2.8	-16 2
	(6.8)	(7.2)	(57.6)	(53.0)	[b]		<u> </u>	
MePhSi(NSNSiMe ₃) ₂	l		<u> </u>				ļ	
2b	0.22	0.58	Q.9	0.5	-57.1 -0	62.2	+3.2	-27.7
	(7.0)	(7.4)		[c]	[d]			
		7.20 m	}					
		7.70 m)				ĺ	
MeHSi(NSNSiMe3)2	1							
3ъ	0.17	0.29 d	1.0	0.2	-57.1 -0	63.9	+3.3	-36.1
	ļ	5.29 q	(57.0)				<u> </u>	
tBu ₂ Si(NSNSiMe ₃) ₂		•	ļ		ļ		ļ	
4 b	0.09	0.14	0.4	27.3	-64.6 r	٦.٥.	+2.4	-16.0
				20.5]	
Ph ₂ Si(NSNSiMe ₃) ₂	1]	
5 b	0.24	7.20 m	0.9	[e]	-57.8 -0	61.5	+3.6	-38.8
	(6.8)	7.78 m	(57.2)					
Me ₂ Ge(NSNSiMe ₃) ₂			<u> </u>				<u> </u>	
6b	0.07	0.63	1.0	3.4	-54.8 -	62.3	+1.3	
Bu ₂ Ge(NSNSiMe ₃) ₂							ļ	
7b	0.15	0.81 t	1.2	14.0	-56.0 -	60.2	+1.2	
		1.27 m	(57.8)	19.9				
		1.48 m		26.0	1			
				26.3	1		1	

TABLE II

NMR data* of R¹R²M(NSNSiMe₃)₂ (1b-7b)

position.^{10b} These facts will not be changed if a group R^1 is replaced by a second NSN'Bu unit. Thus, the $\delta^{15}N(N'Bu)$ values of the compounds $R^1R^2Si(NSN'Bu)_2$ ($\delta^{15}N$ values range from -52 to -56) indicate the Z position of the 'Bu group in agreement with the $\delta^1H(N'Bu)$ data, and therefore, the configuration of **1a**, **3a** and **4a** is determined to be ($Z/E)_2$. Although ¹⁵N NMR data for **2a** and **5a** are not available, 'H and 'C NMR data for the N'Bu group suggest that they also exist as ($Z/E)_2$ isomers. For all compounds **1a**-**5a** (M = Si), only one isomer was detected. Obviously the N'Bu group prefers the Z position if the second substituent is a silyl group. This is consistent with the data obtained for many other sulfur diimides of the type 'Bu(NSN)SiR₂¹R² (see also Scheme II). ^{8b,10b}

The increased shielding of the $^{15}N(Si)$ nuclei in 4a ($\delta^{15}N - 82.1$) with respect to 1a ($\delta^{15}N - 71.8$) is caused by $R^1 = R^2 = ^{1}Bu$. In an analogous manner, the

In C₆D₆, measured at +27°C; coupling constants in Hz: ⁿJ(²⁹SiX) in (); n.o. = not observed; d ■ doublet, m = multiplet, q = quartet, t = triplet.

[[]b] In toluene[d_g], measured at -50°C; $\delta^{15}N(27^{\circ}C) = -59.6$ (NSiMe₃), -57.1 (NSiMe₂).

[[]c] δ^{13} C = 136.2 (ipso), 134.1 (ortho), 128.2 (meta), 130.3 (para).

[[]d] In toluene[d_a], measured at -30°C; $\delta^{15}N(27^{\circ}C) = -59.7$ (NSiMe₃), -60.7 (NSiMePh).

[[]e] $\delta^{13}C = 134.9$ (ipso), 135.0 (ortho), 128.1 (meta), 130.5 (para).

TARIF III

δ ²⁹ Si				
SiMeR ¹	SiCl ₃ (A)	SICI ₃ (B)		
+21.1	-26.6	-41.5		
(+23.2)	(-26.8)	(-41.8)		
+24.2	-25.9	-41.5		
+9.7	-26.4	-41.8		
		8 ²⁹ Si SiMeR ¹ SiCl₃(A) +21.1 -26.6 (+23.2) (-26.8) +24.2 -25.9 +9.7 -26.4		

[[]a] In C_6D_6 , measured at +27°C.

¹⁵N(Si)NMR signal of (${}^{1}Bu_{2}HSiN)_{2}S$ ($\delta^{15}N$ -72.0)¹⁰⁶ is shifted towards lower frequencies as compared with (Me₂HSiN)₂S ($\delta^{15}N$ -64.0),¹⁰⁶ and the same is true for ${}^{1}Bu_{2}Si(NSN)_{2}Si^{1}Bu_{2}$ ($\delta^{15}N$ -94.9)^{10a} relative to Me₂Si(NSN)₂SiMe₂ ($\delta^{15}N$ -76.8).^{10a}

In the case of the bis(sulfurdiimido)germanium derivatives $\mathbf{6a}$ and $\mathbf{7a}$, it is evident from all NMR spectra that two isomers ($\approx 1:1$) are present in solution, one with $(Z/E)_2$ and the other with (Z/E)(E/Z) configuration (see Scheme I). The $\delta^{15}N(N^tBu)$ values between -57 and -64 are in support of the Z position, whereas the $\delta^{15}N(N^tBu)$ values between +22 and +27 are in the range typical of the E position. The $\delta^{15}N(Ge)$ values for the germyl group in Z position are -130.0 ($\mathbf{6a}$) and -137.1 ($\mathbf{7a}$), not far from $\delta^{15}N(Ge) = -128.7^{10b}$ of (E/Z) 'Bu(NSN)GeMe₃ (see Scheme II). The change from M = Si to M = Ge leads to an increasing amount of an isomer in which the 'Bu group occupies the E position, both in 'Bu(NSN)GeMe₃ and in the bis(sulfurdiimido)germanium derivatives $\mathbf{6a}$ and $\mathbf{7a}$.

The bis(N-trimethylsilylsulfurdiimido) derivatives, $R^1R^2M(NSNSiMe_3)_2$ (1b-7b), are more mobile in solution than the corresponding N¹Bu compounds 1a-7a. Most $\delta^{15}N$ values of 1b-7b are typical averaged values which are markedly temperature-dependent, indicating fast $Z/E \rightleftharpoons E/Z$ isomerization processes. ^{8c,10b} One example is the position of the ¹⁵N(SiMe₃) resonance of 1b at room temperature ($\delta^{15}N(SiMe_3)$ -59.6) and at -50°C ($\delta^{15}N(SiMe_3)$ -65.1). The increase in shielding at lower temperature can be interpreted as the result of a greater contribution from isomers in which the SiMe₃ group occupies the Z position. In contrast, at low temperature the ¹⁵N(SiMe₂) signal of 1b is shifted towards higher frequency, indicating an increasing

[[]b] δ^{29} Si CP/MAS values in ().

[[]c] δ^{29} Si = +6.8 (=NSiMe₃), +23.9 (SiMe₃).

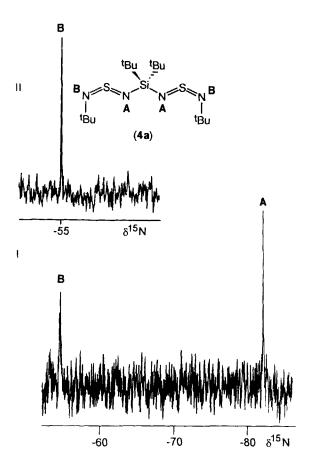


FIGURE 2 30.4 MHz ¹⁵N NMR spectra of 'Bu₂Si(NSN'Bu)₂ (4a) in toluene[d₈]. I, Direct measurement without ¹H decoupling, measured at 223 K. II, Recorded using the refocused INEPT pulse sequence with ¹H decoupling, ³J(¹⁵N¹H) was assumed to be 2.2 Hz, measured at 243 K.

contribution from the isomers in which the SiMe₂ group prefers the E position. Altogether, this points towards a preference of the (Z/E)₂ configuration in 1b.

²⁹Si NMR of bis(sulfurdiimido)silicon and -germanium derivatives: As can be seen from the small difference between δ^{29} Si(SiMe₃) values (Δ^{29} Si 0.7) for the isomers of 'Bu(NSN)SiMe₃ (see Scheme II), ²⁹Si NMR is not particularly helpful for the configurational assignment. However, some other points can be made by comparing the δ^{29} Si(SiR¹R²) values of R¹R²Si(NSNR)₂ (1a,b-5a,b). Thus, the δ^{29} Si values of the compounds 1a (δ^{29} Si −16.2), 1b (δ^{29} Si −16.2) and 4a (δ^{29} Si −15.6), 4b (δ^{29} Si −16.0) differ only slightly from each other, although we are dealing with SiMe₂ and Si¹Bu₂ groups. Usually, the replacement of two methyl by two 'Bu groups causes a reduced ²⁹Si nuclear shielding by ≥8 ppm [e.g. δ^{29} Si(Me₂HSiCl) +11.6 and δ^{29} Si('Bu₂HSiCl) +27.4; or δ^{29} Si(Me₂SiCl₂) +30.8 and δ^{29} Si('Bu₂SiCl₂) + 39.3); or δ^{29} Si(Me₂HSiN)₂S) −16.3 and δ^{29} Si(('Bu₂HSiN)₂S) −1.1]. Interestingly, it was found that there is also only a small difference Δ^{29} Si between the comparable cyclic sulfur diimides R₂Si(NSN)₂SiR₂ (9) (R = Me: δ^{29} Si −35.2, and R = 'Bu: δ^{29} Si −31.9).

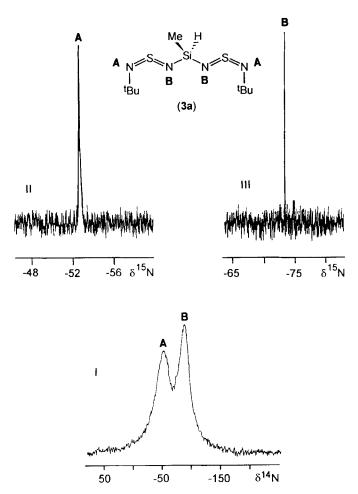


FIGURE 3 I, 21.7 MHz ¹⁴N NMR spectrum of MeHSi(NSN'Bu)₂ (3a) in toluene[d₈], measured at 298 K. II and III: 30.4 MHz ¹⁵N NMR spectra of MeHSi(NSN Bu)₂ (3a) in toluene [d₈], measured at 243 K; recorded using the refocused INEPT pulse sequence with ¹H decoupling. II, ³J(¹⁵N¹H) was assumed to be 2.0 Hz. III, ³J(¹⁵N¹H) was assumed to be 1.3 Hz.

It is conceivable that the small Δ^{29} Si values are related to the wider S—N—Si bond angles in the case of the 'Bu₂Si derivatives. It is further remarkable that the ²⁹Si NMR signals of the cyclic compounds are shifted by ≥ 16 ppm towards higher field than those of the corresponding non-cyclic compounds 1b and 4b. These differing δ^{29} Si values indicate the influence of the enforced Z/Z configuration on ²⁹Si nuclear shielding in the cyclic compounds as compared to the highly fluxional situation in the non-cyclic derivatives.

²⁹Si NMR of the products **10** and **11**, obtained from the reaction between bis(sulfur-diimido)silicon derivatives and hexachlorodisilane: Three ²⁹Si NMR signals are observed in each case, one at rather low frequency, typical of an N—SiCl₃ group with a penta-coordinated silicon atom, due to an additional coordinative N—Si bond, another one in the range typical of N—SiCl₃ groups¹¹ with a tetra-

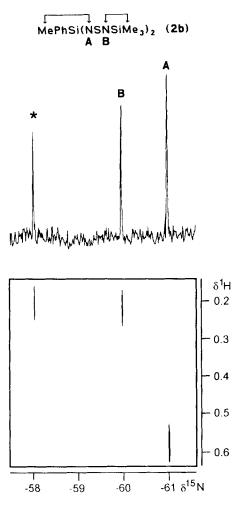


FIGURE 4 2D ¹⁵N/¹H NMR spectrum of MePhSi(NSNSiMe₃)₂ (2b) in C₆D₆, measured at 298 K, $^3J(^{15}N^{1}H)$ was assumed to be 1.3 Hz ($\delta^{1}H(SiMe) = 0.56$, $\delta^{1}H(SiMe_3) = 0.22$); * = Me₃Si(NSN)SiMe₃ ($\delta^{1}H(SiMe_3) = 0.20$); arrows on top of the formula indicate the path of polarisation transfer.

S. MMa		į	δ ¹⁵ N(N ^t Bu)	δ ¹⁵ N(NM)	δ ²⁹ Si
N S N MMe3	M = Si	(95%)	-60.5	-65.9	1.7
t _{Bu} (Z/E)	M = Ge	(70%)	-68.5	-46.0	
t _{Bu} s N	M = Si	(5%)	+34.1	-141.5	2.4
	M = Ge	(30%)	+17.1	-128.7	
(E/Z) MMe ₃			1	1	1

SCHEME II Configurational isomers and ¹⁵N and ²⁹Si NMR data of the sulfur diimides ¹Bu(NSN)MMe₃, ¹⁰⁶ for comparison with the bis(sulfurdiimido)silicon and -germanium derivatives.

coordinated silicon atom, and finally the signal for the SiR^1R^2 group at fairly high frequency. By using INEPT, based on $^2J(^{29}Si^1H)$, only the latter ^{29}Si NMR signal was recorded. The ^{29}Si deshielding in the SiR^1R^2 group is caused by the adjacent nitrogen atom which is involved in donor-acceptor interactions 14 as proposed for the structures of 10 and 11. The solid-state ^{29}Si CP/MAS spectrum of 10a shows almost the same $\delta^{29}Si$ values as in solution, indicating that the structure in the solid state is comparable to that in solution.

EXPERIMENTAL

All compounds were handled in an atmosphere of dry argon, and carefully dried solvents were used for the syntheses and for the preparation of the samples for NMR measurements. Me₂SiCl₂, MePhSiCl₂, MeHSiCl₂, Ph₂SiCl₂, Me₂GeCl₂ and Bu₂GeCl₂ were obtained as commercial products and used without further purification. The potassium salts K[(NSN)R] (R = 'Bu, SiMe₃)^{7c} were prepared according to literature procedures.

(a) Synthesis of Bis(tert-butylsufurdiimido) Compounds R'R2M(NSN'Bu)₂ (1a-7a)

General procedure: A solution of 3 mmoles R¹R²MCl₂ (M = Si, Ge) in 20 ml hexane was added to a suspension of 6 mmoles K[(NSN)¹Bu] in 30 ml DME at -78°C. The mixture was stirred for 30 minutes at this temperature and then allowed to reach room temperature. After filtration the solvent was removed from the solution in the high vacuum. The products 1a-7a are yellow to orange liquids, and the yields are in the range of 75-90%.

(b) Synthesis of bis(trimethylsilylsulfurdiimido) Compounds R¹R²M(NSNSiMe₃)₂ (1b-7b)

General procedure: A suspension of 6 mmoles $K[(NSN)SiMe_3]$ in 100 ml hexane was combined with a solution of 3 mmoles $R^1R^2MCl_2$ (M=Si, Ge) in 20 ml hexane at room temperature. The mixture was stirred for 7 days at room temperature, then filtered and the solvent removed from the solution in a high vacuum. All products were obtained as yellow liquids with yields between 60-75%.

(c) Reactions of Bis(sulfurdiimido)silicon Derivatives with Hexachlorodisilane: Synthesis of the Addition Compounds 10a,b and 11a

General procedure: A suspension of 2 mmoles R¹R²Si(NSNR)₂ in 40 ml hexane was combined with a solution of either 2 mmoles, 4 mmoles or 20 mmoles, respectively, hexachlorodisilane in 30 ml hexane at 0°C. The mixture was allowed to reach room temperature and then stirred for an additional 24 hours. Finally the solvent was removed in a high vacuum.

10a (R¹ = R² = Me, R = ¹Bu): pale yellow powder; mp. 69-70°C; IR: ν_{as} (NSN) (hexane) = 1232 cm⁻¹, ν_{a} (NSN) (hexane) = 1047 cm⁻¹; δ ¹H ($C_{e}D_{e}$, 25°C) [²J(²³Si¹H)] = 0.66 [7.2] (SiMe₂); 1.35, 1.40 (¹Bu); δ ¹³C ($C_{e}D_{e}$, 25°C) = 5.9 (SiMe₂); 29.6, 30.9, 64.0, 63.3 (¹Bu); MS: m/z (%) = 504 (1.5; M⁺-57), 386 (6), 350 (9), 252 (4), 192 (4), 139 (3), 93 (5), 57 (100), 41 (9).

10b (R¹ = R² = Me, R = SiMe₃): yellow oil; δ^{1} H (C₆D₆, 25°C) [${}^{2}J({}^{29}Si^{1}H)$] = 0.20 [6.8] (\Longrightarrow NSiMe₃); 0.39 [6.8] (SiMe₃); 0.72 [7.2] (SiMe₂); δ^{13} C (C₆D₆, 25°C) [${}^{1}J({}^{29}Si^{13}C)$] = 0.5 [57.6] (\Longrightarrow NSiMe₃); 3.3 [58.7] (SiMe₃); 6.0 (SiMe₂).

11a (R¹ = Me, R² = Ph, R = ¹Bu): yellow oil; δ^1 H (C₆D₆, 25°C) = 0.88 (SiMe); 1.26, 1.42 (¹Bu); 7.16 (m), 7.56 (m) (SiPh); δ^{13} C (C₆D₆, 25°C) = 5.6 (SiMe); 29.6, 31.0, 64.1, 64.3 (¹Bu); 135.0 (ipso), 134.3 (ortho), 128.3 (meta), 131.1 (para) (SiPh).

(d) Spectroscopic Studies

NMR instruments (all equipped with multinuclear units and variable-temperature control units) for liquid state measurements were JEOL FX 90Q (29 Si NMR), Bruker AC 300 and Bruker AM 500 (14 H, 15 C, 14 N, 15 N, 29 Si NMR). Chemical shifts are given with respect to Me₄Si (internal) for δ^{14} and δ^{13} C (δ^{13} C (toluene [d₈]) = 20.4, δ^{13} C(C₆D₆) = 128.0), Me₄Si (external: $\Xi(^{29}$ Si) = 19.867184 MHz) and liquid MeNO₂ (external: 14 N, 15 N, $\Xi(^{15}$ N) = 10.136767 MHz). The assignment of 14 H and 13 C resonances to the different isomers is based upon 2D 13 C/ 14 H heteronuclear shift correlations [based upon 1 J(13 C'H) and 2 J(13 C'H)]. A Bruker MSL 300 instrument (equipped with a multinuclear double-bearing head) served for the solid state 29 Si CP/MAS NMR measurement; the sample was packed in an air-tight insert 15 fitting exactly into

the commercial ZrO_2 rotor. The spectrum was run at two different spinning speeds for assignment of the isotropic $\delta^{29}Si$ values.

IR: Perkin-Elmer 9836. MS: EI-MS (70 eV) Varian MAT CH 7.

ACKNOWLEDGEMENT

We gratefully acknowledge support of this work by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. We thank Dr. A. Sebald for recording the ²⁹Si CP/MAS NMR spectrum of 10a.

REFERENCES

- 1. R. Bussas, G. Kresze, H. Münsterer and A. Schwöbel, Sulfur Rep., 2, 215 (1983).
- G. Kresze and W. Wucherpfennig, Angew. Chem., 79, 109 (1967); Angew. Chem. Int. Ed. Engl., 6, 149 (1968).
- 3. J. D. Woollins, "Non-Metal Rings, Cages and Clusters," p. 73 ff., Wiley, New York, 1988.
- (a) H. W. Roesky and H. Wiezer, Angew. Chem., 86, 130 (1974); Angew. Chem. Int. Ed. Engl., 13, 146 (1974);
 (b) D. Hänssgen and W. Roelle, J. Organomet. Chem., 56, C14 (1973).
- (a) O. J. Scherer and R. Wies, Z. Naturforsch., 25b, 1486 (1970); (b) R. Jones, D. J. Williams, P. T. Wood and J. D. Woollins, Polyhedron, 8, 91 (1989).
- (a) W. Isenberg, R. Mews and G. M. Sheldick, Z. Anorg. Allg. Chem., 525, 54 (1985);
 (b) A. V. Zibarev, A. O. Miller, Y. V. Gatilov and G. G. Furin, Heteroatom Chemistry, 1, 443 (1990);
 (c) M. Witt, H. W. Roesky, M. Noltemeyer, W. Clegg, M. Schmid and G. M. Sheldrick, Angew. Chem., 93, 1017 (1981); Angew. Chem. Int. Ed. Engl., 20, 974 (1981).
- (a) M. Herberhold, F. Neumann, G. Süss-Fink and U. Thewalt, *Inorg. Chem.*, 26, 3612 (1987);
 (b) R. Appel and M. Montenarh, Z. *Naturforsch.*, 30b, 847 (1975);
 (c) D. Hänssgen and B. Ross, Z. *Anorg. Allg. Chem.*, 473, 80 (1981).
- (a) M. Herberhold, S. M. Frank and B. Wrackmeyer, Z. Naturforsch., 43b, 985 (1988); (b) M. Herberhold, S. Gerstmann and B. Wrackmeyer, Phosphorus, Sulfur and Silicon, 66, 273 (1992); (c) M. Herberhold, S. Gerstmann, B. Wrackmeyer and H. Borrmann, J. Chem. Soc., Dalton Trans., 633 (1994); (d) M. Herberhold, C. Köhler and B. Wrackmeyer, Phosphorus, Sulfur and Silicon, 68, 219 (1992); (e) M. Herberhold, C. Köhler and B. Wrackmeyer, Phosphorus, Sulfur and Silicon, 71, 75 (1992).
- B. Wrackmeyer, S. Gerstmann and M. Herberhold, Magn. Reson. Chem., 31, 499 (1993); (b) B. Wrackmeyer, C. Köhler and M. Herberhold, Magn. Reson. Chem., 31, 987 (1993).
- (a) M. Herberhold, S. Gerstmann, W. Milius and B. Wrackmeyer, Z. Naturforsch., 48b, 1041 (1993);
 (b) M. Herberhold, S. Gerstmann, W. Milius, B. Wrackmeyer and H. Borrmann, in preparation.
- (a) M. Herberhold, S. M. Frank, B. Wrackmeyer, H. Borrmann and A. Simon, Chem. Ber., 123, 75 (1990); (b) B. Wrackmeyer, S. M. Frank, M. Herberhold, A. Simon and H. Borrmann, J. Chem. Soc., Dalton Trans., 2607 (1991); (c) M. Herberhold, S. Gerstmann, W. Milius and B. Wrackmeyer, Z. Naturforsch., 48b, 249 (1993).
- 12. R. Freemann, H. D. W. Hill and R. Kaptein, J. Magn. Reson., 7, 327 (1972).
- (a) D. P. Burum and R. R. Ernst, J. Magn. Reson., 39, 163 (1980); (b) G. A. Morris, J. Magn. Reson., 41, 185 (1980).
- 14. R. Köster, G. Seidel and B. Wrackmeyer, Chem. Ber., 122, 1825 (1989).
- 15. L. H. Merwin, A. Sebald, I. E. Espidel and R. K. Harris, J. Magn. Reson., 84, 367 (1989).